THE INVESTIGATION ON SYNTHESIS AND OPTICAL PROPERTIES OF Ag-DOPED ZnS NANOCRYSTALS BY HYDROTHERMAL METHOD

نویسندگان

  • DEZHI QIN
  • GUANGRUI YANG
  • GUOXU HE
  • LI ZHANG
  • QIUXIA ZHANG
  • LUYAO LI
چکیده

Ag-doped ZnS nanocrystals were synthesized by hydrothermal method in propanetriol solutions. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) characterizations were used to determine the structure and morphology of ZnS: Ag nanocrystals. The as-prepared nanoparticles are approximately spherical with average size around 20~30nm and have a cubic zinc blended structure. The quantum-confined effect of the Ag-doped ZnS nanocrystals is confirmed by the ultraviolet-visible (UV-vis) spectra. The optical properties of ZnS: Ag nanocrystals were investigated by using photoluminescence (PL) spectra, which showed that the products exhibited good optical properties with maximum emission peak at about 460nm, and the intensity of luminescence increased with the increase of concentration of Ag ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-functional NaLuF4:Gd3+/Yb3+/Er3+ nanocrystals: hydrothermal synthesis, optical and magnetic properties

Magnetic-fluorescent lanthanide doped sodium lutetium fluoride (NaLuF4:Yb3+/Er3+/Gd3+) nanocrystals were synthesized via facile hydrothermal method by varying concentration of Gd3+. Powder X-ray powder diffraction (PXRD), scanning electron microscopy (SEM),transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), p...

متن کامل

Photo-degradation of Methylene Orange by zinc-sulfide nanoparticles synthesized via hydrothermal method

Background and Objective: In the present research, the synthesis and characterization of ZnS nanoparticles in zinc blend crystallite phase via hydrothermal method were reported. Advanced oxidation processes using nanophotocatalysts are one of the most efficient methods for removing the dyes with complex organic compounds from textile and industrial wastewaters. The photocatalytic performance of...

متن کامل

Sonochemical synthesis of undoped and Co-doped ZnO nanostructures and investigation of optical and photocatalytic properties

In this paper, undopedZnO and Co-ZnOnano structureswith different molar ratio of Cobalt have been synthesized by the sonochemical method. Structure have been characterized by Fourier Transform (FTIR) and UV–Vis spectroscopy,Scanning Electron Microscopy (SEM), Energy Dispersive Analytical X-Ray (EDAX), and X-Ray Diffraction (XRD) methods. Moreover, the direct band gap has been calculated by Tauc...

متن کامل

Facile Synthesis and Characterization of MPA Capped CdSe and CdSe/ZnS Nanocrystals

Nanosized metal chalcogenides have aroused great interest in the scientific community owing to their important non linear optical properties, luminescent properties, quantum size effects and other important physical and chemical properties. CdSe is one such material which shows strong fluorescence, that can be tuned by simply varying the size of the particle for use in various applications such...

متن کامل

Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Antimony Selenide Nanomaterials: Synthesis, Characterization, Electrical, Thermoelectrical and Optical Properties

Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Sb2Se3 nanomaterials were synthesized by a Co-reduction method in hydrothermal condition. Powder XRD patterns indicate that the LnxLn′xSb2-2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x= 0.00-0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). SEM and TEM images show that Co-doping of Lu3+/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012